

# Office of Space Science and Applications Microgravity Science and Applications Division

# the Containerless Experimentation in Microgravity

Workshop

Pasadena Hilton Pasadena, California January 17-19, 1990

> Mark C. Lee NASA Headquarters

> > 90-1-12-WHW





- 1. Elimination/Reduction of Surface Contamination
  - Adequate Earth-based technology
- 2. Reduction of dynamic nucleation
  - · Paucity of reliable data

90-1-12-1-WHW





### **Objectives**

- To delineate scientific justification for the U.S. Containerless Experimentation Program in Microgravity for the next decade and beyond
- To guide NASA to define the next generation of containerless experimentation instruments in microgravity

90. L.12.2.WM





### **Pre-Workshop Panel Meeting**

Held at Caltech on August 16, 1989

Professor John Perepezko Chairman:

Prof. R. Bayuzick Members:

**Vanderbilt University University of Pittsburgh** Prof. H. Brody

**NIST** Dr. A. Cezairliyan JPL Dr. D. Elleman Dr. E. Ethridge **MSFC** 

**Rice University** Dr. R. Hauge **Vanderbilt University** Dr. W. Hofmeister

Caltech Prof. W. Johnson

**NASA Headquarters** Dr. M. Lee

CPI Dr. P. Nordine Dr. E. Trinh **JPL** 

**Vanderbilt University** Prof. T. Wang Dr. M. Weinberg **University of Arizona** 

90-1-12-3-W-M





### Objectives of Pre-Workshop Panel Meeting

- 1. To recommend to full workshop pertinent science and technology areas for discussion
- 2. To organize and structure full workshop
- 3. To take ownership of the full workshop

90-1-12-4-WHV





### Recommendations for Discussion from Pre-Workshop Panel

- 1. Fluid dynamics (surface tension/thermocapillary at T < 200 °C)
- 2. Thermophysical properties (diffusion at extremely high temperatures, viscosity and surface tension)
- 3. Benchmark materials
- 4. Very high temperature chemistry for nonconducting materials
- 5. Quiescent undercooled melt nucleation study
- 6. Exploratory growth of protein and other novel crystals
- 7. Diffusional interactions of gas-particle dispersion
- 8. Development/verification of processing modeling

90-1-12-5-WHW

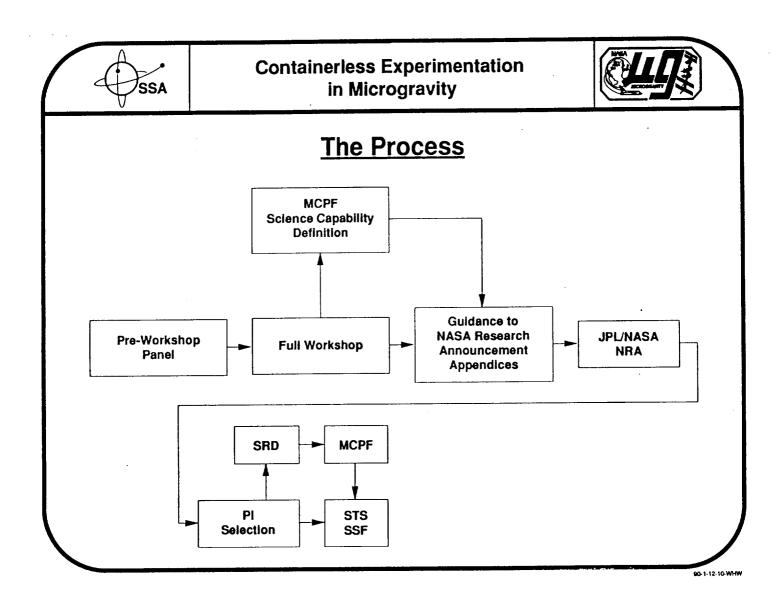




# Ten Suggested Questions to be Addressed by the Workshop and Splinter Sessions

- 1. Is the removal of surface contamination alone enough to justify containerless experimentation in microgravity?
- 2. If not, then what are the other primary scientific justifications for performing containerless experimentation in microgravity?
- 3. What is the sensible way to acquire data for the purpose of verifying science justifications not currently available?
- 4. What should future containerless flight instruments look like if they are developed to meet those scientific justifications?
- 5. Does NASA need to develop a next generation electromagnetic manipulator?

90-1-12-12-WH






### **Ten Suggested Questions (continued)**

- 6. Does NASA need a high temperature acoustic program?
- 7. Is there any advantage to electrostatic positioning for space applications? Is it useful for melt undercooling study? Is it useful for low temperature protein crystallization applications?
- 8. Is there any need for a heavy-ion beam positioning scheme in space?
- 9. Can containerless manipulator capability be better achieved through a hybrid system such as acoustic-electromagnetic or acoustic-electrostatic?
- 10. How much investment is reasonable for the NASA containerless program? What percentage of the budget is adequate to cover high risk and, if successful, high yield areas?

90.1.12.13.WHW







# Multiuser Hardware "The Double NRA Approach"

NRA Selections PI Funding Starts

minimum 2 years

definition studies with approved proposals

Advantages: Multiuser HW better defined in

2nd announcement

All Science community has an equal chance for flight opportunities

Release 2nd NRA

ISSUE: Time Required for Double NRA

MCPF √

Materials Science X Fluids √

Combustion √
Fundamental Science TBD

PCG

-20-1-12-7-WHW





### NRA and AO Phasing

|    |                     | Center Submission |              |              |    |              |    |
|----|---------------------|-------------------|--------------|--------------|----|--------------|----|
|    |                     | 90                | 91           | 92           | 93 | 94           | 95 |
| 1. | Combustion          |                   | 4            |              |    | 1            |    |
| 2. | PCG                 |                   | $\checkmark$ |              |    | 1            |    |
| 3. | Containerless       |                   | $\checkmark$ |              |    | $\checkmark$ |    |
| 4. | Materials Science   |                   | $\checkmark$ |              |    | $\checkmark$ |    |
| 5. | Fluids              |                   |              | $\checkmark$ |    |              | 1  |
| 6. | Biotechnology       |                   | $\checkmark$ | $\checkmark$ |    | $\checkmark$ |    |
| 7. | Fundamental Science |                   |              |              | pe | nding        |    |





### **Products of Workshop**

- 1. Information to guide JPL/NASA in putting together a Containerless NRA to be released in FY90
- 2. Information to guide JPL/NASA in defining a Modular Containerless Processing Facility (MCPF) for Space Station Freedom

90.1.12.4.W.W





### The Challenge

Containerless experimentation in microgravity must be based on sound scientific justification. As NASA and this nation's investment in this area increases, it is even more critical to do so. Without strong scientific justification, it is increasingly difficult for NASA to maintain the current level of effort needed for the Space Station era in the face of mounting criticism voiced by the scientific community at large.

The challenge of this workshop is to provide this scientific justification, and to guide NASA in developing the next generation of flight instruments.

90-1-12-11-WHM



# NASA Headquarters Office of Space Science and Applications Microgravity Science and Applications Division

# Status and Outlook of the Microgravity Science and Applications Program at NASA

Presentation to

# Containerless Experimentation in Microgravity Workshop

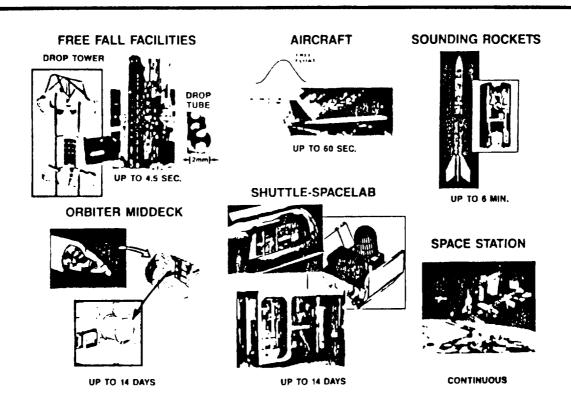
Larry Spencer January 17, 1990

9001-008-01CW 01/10/90

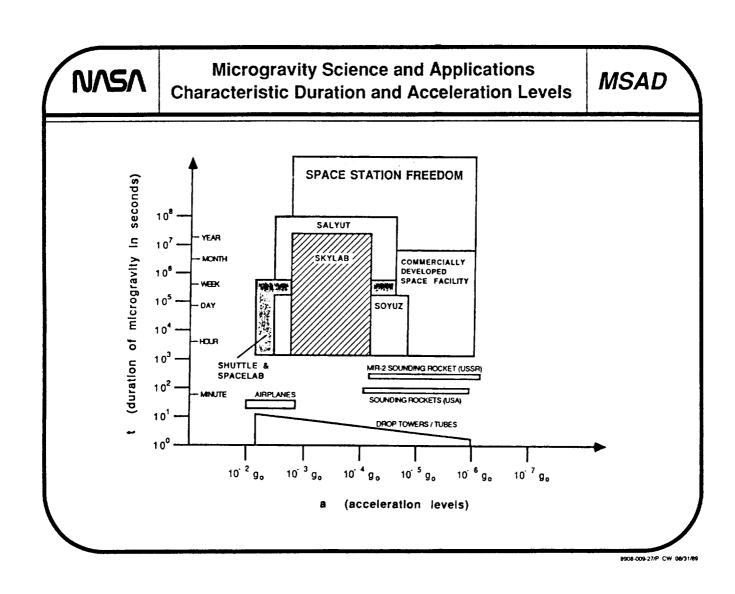


### **NASA Microgravity Program Goals**




- Develop comprehensive research program in fundamental sciences, materials science, and biotechnology
- Develop understanding of gravity-dependent physical phenomena as basis of reliable predictive capability for processing operations/ technological issues in Earth/non-Earth environments
- Foster growth of an interdisciplinary research community
- Encourage international cooperation
- Explore new materials and processes relevant to basic research and commercial applications
- Develop permanently manned, multi-facility national microgravity laboratory in low-Earth orbit
- Promote industrial application of space research

9001-008-02CW 01/10/90


# WSA OFFICE OF SPACE SCIENCE AND APPLICATIONS MICROGRAVITY SCIENCE AND APPLICATIONS DIVISION

#### THE APPROACH DETAILED LABORATORY INVESTIGATION NEW IDEAS . UNIVERSITY RESEARCH • NASA R&T "O"g EFFECTS BASE CONCEPT FEASIBILITY CONFIRMATION • OTHER GOVERNMENT RESEARCH . INDUSTRIAL RESEARCH KEY SPACE EXPERIMENTS COMMERCIALIZATION **OPPORTUNITIES**

### MICROGRAVITY SCIENCE AND APPLICATIONS EXPERIMENT CAPABILITY



ORIGINAL PAGE IS OF POOR QUALITY





### Microgravity Science and Applications Program



#### **Fundamental Science**

Fluid Physics

Combustion Science

Critical Phenomena

Relativity Theory

### **Materials Science**

**Electronic Materials** 

Metals and Alloys

Glasses and Ceramics

### Biotechnology

Cell Physiology

Cell Differentiation

Protein Crystal Growth

**Biological Separations** 

9001-008-00CW 01/10/90



### **Announcements Outlook**



| Release Date | Proposals Due | Announcement                                                                    |
|--------------|---------------|---------------------------------------------------------------------------------|
| 9 Nov 89     | 31 Dec 89     | ESA AO for Materials and Fluid Science Experiments: IML-2                       |
| 26 Dec 89    | 26 Mar 90     | NASA NRA for Microgravity Combustion Science: Research and Flight Opportunities |
| FY90 *       | TBD           | Protein Crystal Growth Announcement                                             |
| FY90 *       | TBD           | Solidification Research Announcement                                            |
| FY90 - 91 *  | TBD           | Containerless Research Announcement                                             |
| FY91 *       | TBD           | Fluids Research Announcement                                                    |
| FY91 *       | TBD           | Foreign Hardware IML-3 Announcement                                             |
| FY92 *       | TBD           | Fundamental Phenomenal/Critical Point Research Announcement                     |

<sup>\*</sup> Dates identified are tentative pending budget availability

9001-008-13CW 01/10/90



# OFFICE OF SPACE SCIENCE AND APPLICATIONS Flight Systems Division



# INTERNATIONAL MICROGRAVITY LABORATORY (IML) -1 PAYLOAD COMPLEMENT

| EXPMT<br>No. | OV                  | EXPERIMENT / FACILITY TITLE              | ACRONYM | HQ CODE<br>SPONSOR | EXPERIMENT / FACILITY DEVELOPER |
|--------------|---------------------|------------------------------------------|---------|--------------------|---------------------------------|
| 2            |                     | FLUIDS EXPERIMENT SYSTEM                 | FES     | EN                 | MSFC                            |
| 3            | 1                   | VAPOR CRYSTAL GROWTH SYSTEM              | vcgs    | EN                 | MSFC                            |
| 4            | l                   | MERCURIC IODIDE CRYSTAL GROWTH           | MICG    | EN                 | CNES                            |
| 19           | 1                   | CRITICAL POINT FACILITY                  | CPF     | EN                 | ESTEC                           |
| 13           |                     | ORGANIC CRYSTAL GROWTH FACILITY          | OCGF    | EN                 | NASDA                           |
| 17           | PACK                | SPACE ACCELERATION MEASUREMENTS SYSTEM   | SAMS    | EN                 | LeRC                            |
| 10           |                     | MICROGRAVITY VESTIBULAR INVESTIGATIONS   | MVI     | EB                 | JSC                             |
| 16           | SPACELAB            | RADIATION MONITORING CONTAINER/DOSIMETER | RMCD    | EB                 | NASDA                           |
| 15           | PAC                 | MENTAL WORKLOAD AND PERFORMANCE EVAL.    | MWPE    | EB                 | JSC                             |
| 14           | N N                 | BIOSTACK                                 | BSK     | EB                 | DLA                             |
|              |                     | IMAX                                     | IMAX    | мс                 | JSC                             |
| 6            |                     | GRAVITATIONAL PLANT PHYSIOLOGY FACILITY  | GPPF    | EB                 | ARC                             |
| 7            |                     | BIORACK SYSTEMS                          | BR      | EΒ                 | ESA/ESTEC                       |
| 5            |                     | PROTEIN CRYSTAL GROWTH                   | PCG     | EN                 | MSFC                            |
| 18           | Ì                   | CRYOSTAT                                 | CRY     | EN                 | DLR                             |
| 8            | SMIDEX /<br>MIDDECK | SPACE PHYSIOLOGY EXPERIMENTS             | SPE     | <b>E</b> 8         | CSA                             |
|              |                     |                                          |         |                    |                                 |

IML-1-C EM 11/89



# First United States Microgravity Payload (USMP-1)



### **Payload Complement**

| No. | Experiment/Facility Title                                     | NASA HQs<br>Sponsor | Developer |
|-----|---------------------------------------------------------------|---------------------|-----------|
| 1   | Lambda Point Experiment                                       | Code EN             | JPL       |
| 2   | MEPHISTO                                                      | CNES                | CNES      |
| 3   | Advanced Automated Directional Solidification Furnace (AADSF) | Code EN             | MSFC      |
| 4   | Space Acceleration Measurement System (SAMS)                  | Code EN             | LeRC      |

9001-008-14CW 01/10/90



### First United States Microgravity Laboratory (USML-1)



### **Baseline Payload Complement**

| No. | Experiment/Facility Title                                      | NASA HQs<br>Sponsor | Developer      |
|-----|----------------------------------------------------------------|---------------------|----------------|
| 1   | Crystal Growth Furnace (CGF)                                   | Code EN             | MSFC           |
| 2   | Crystals, Monomers, Deposition and Separation Facility (CMDSF) | Code C              | UAH CCDS       |
| 3   | Drop Physics Module (DPM)                                      | Code EN             | JPL            |
| 4   | Surface Tension Driven Convection Experiment (STDCE)           | Code EN             | LeRC           |
| 5   | Glovebox (GBX)                                                 | Code EN             | TBD            |
| 6   | Space Acceleration Measurement System (SAMS)                   | Code EN             | LeRC           |
| 7   | Solid Surface Combustion Experiment (SSCE)                     | Code EN             | LeRC           |
| 8   | Zeolite Crystal Growth (ZCG)                                   | Code C              | Battelle CCDS  |
| 9   | Protein Crystal Growth (PCG) (3 R/IM's)                        | Code C              | MSFC           |
| 10  | Generic Bioprocessing Apparatus                                | Code C              | Bioreserve     |
| 11  | Solution Crystal Growth (SCG)                                  | Code C              | Battelle CCDS  |
| 12  | Astroculture (ASC)                                             | Code C              | Wisconsin CCDS |

9001-008-15CW 01/10/90



# Second United States Microgravity Payload (USMP-2)



### **Payload Complement**

| No. | Experiment/Facility Title                                     | NASA HQs<br>Sponsor | Developer |
|-----|---------------------------------------------------------------|---------------------|-----------|
| 1   | Critical Fluid Light Scattering Experiment                    | Code EN             | LeRC      |
| 2   | Isothermal Dendritic Growth Experiment                        | Code EN             | LeRC      |
| 3   | MEPHISTO                                                      | CNES                | CNES      |
| 4   | Advanced Automated Directional Solidification Furnace (AADSF) | Code EN             | MSFC      |
| 5   | Space Acceleration Measurement System (SAMS)                  | Code EN             | LeRC      |

001-008-16CW 01/10/90



### OFFICE OF SPACE SCIENCE AND APPLICATIONS



### Flight Systems Division

# INTERNATIONAL MICROGRAVITY LABORATORY (IML) -2 CANDIDATE PAYLOAD COMPLEMENT

| XPMT | ٥٧                 | CYDCONACNT A CACH ITS TITLE                          | ACRONYM     | HQ CODE<br>SPONSOR | EXPERIMENT / FACILITY DEVELOPER |
|------|--------------------|------------------------------------------------------|-------------|--------------------|---------------------------------|
| No.  | FOC                | EXPERIMENT / FACILITY TITLE  BIORACK (W/O CLR/FZR)   | BR          | EB                 | ESTEC/NASA JSC                  |
|      |                    | AQUATIC ANIMAL ENVIRONMENTAL UNIT                    | AAEU        | EB                 | NASDA                           |
|      |                    | PERFORMANCE WORKSTATION                              | PWS         | EB                 | NASA JSC                        |
|      |                    | VESTIBULAR & SENSORI-MOTOR EXPERIMENT                | VSE         | EB                 | CNES                            |
|      |                    | SLOW ROTATING CENTRIFUGE WITH MICROSCOPE             | NIZEMI      | EB                 | DLR                             |
|      | ž                  | REAL-TIME RADIATION MONITORING DEVICE                | RRMD        | EB                 | NASDA                           |
|      | SPACELAB RACK      | BACK PAIN IN ASTRONAUTS                              | ВРА         | EB                 | CSA                             |
| 1    | 3                  | BIOSTACK                                             | вѕк         | EB                 | DLR                             |
| -    | Š                  | VIBRATION ISOLATION BOX EXPERIMENT SYSTEM            | VIBES       | EN                 | NASDA                           |
|      | /dS                | ELECTROMAGNETIC CONTAINERLESS PROCESSING FAC.        | TEMPUS      | EN                 | DLR                             |
| -    |                    | BUBBLE, DROP & PARTICLE UNIT                         | BDPU        | EN                 | ESTEC                           |
|      |                    | APPLIED RESEARCH ON SEPARATION METHODS USING         | RAMSES      | EN                 | CNES                            |
|      |                    | SPACE ELECTROPHORESIS                                |             |                    |                                 |
| - 1  |                    | FREE FLOW ELECTROPHORESIS & THERMO-ELECTRIC INCUBAT. | FFEU/TEI-HT | EN                 | NASDA                           |
|      |                    | QUASI-STEADY ACCELERATION MEASUREMENT                | QSAM        | EN                 | DLR                             |
| - 1  |                    | ADVANCED GRADIENT HEATING FACILITY                   | AGHF        | EN                 | ESTEC                           |
| ı    |                    | LARGE ISOTHERMAL FURNACE                             | LIF         | EN                 | NASDA                           |
| _    | SPACELAB<br>AISLE  | CANADIAN MINI-SLED                                   | CMS         | EB                 | CSA                             |
| Ì    |                    | LOWER BODY NEGATIVE PRESSURE DEVICE                  | LBNPD       | EB                 | NASA JSC                        |
|      |                    | DOUBLE RACK ADAPTOR PLATE                            | DRAP        | EΒ                 | NASA JSC                        |
|      |                    | EDOMP EXERCISER                                      |             | EB                 | NASA JSC                        |
|      |                    | SPACE ACCELERATION MEASUREMENT SYSTEM                | SAMS        | EN                 | NASA LeRC                       |
|      | 22.2               | SLEEP MONITORING EXPERIMENT                          | SME         | EB                 | NASA JSC                        |
|      | SMIDEX/<br>MIDDECK | ADVANCED PROTEIN CRYSTALIZATION FACILITY             | APCF        | EN                 | ESA                             |

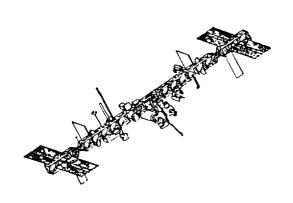
IML-2-C EM 11/89



#### 1989 Highlights Advanced Programs



#### Space Station:


- Joint Science Utilization Study Support
- May 1989: Modular Combustion Facility Assessment Workshop
- June 1989: Space Station Furnace Facility One Year Conceptual Design Study awarded to Teledyne Brown Engineering
- August 1989: Deployment dates for multi-user facilities rephased
- November 1989: Request out to all MSAD investigators to provide model experiment scenarios for Space Station
- December 1989: Microgravity Requirement addressed at combined Level I/Level II Space Station Control Board meeting at Reston, Virginia

#### Human Exploration Initiative

 Preliminary Program Plan developed for Microgravity Science and Applications in response to call for 90-day NASA report to Vice-President Quayle









# Microgravity Science and Applications Plans for Space Station



- Six multi-user experimental facilities planned for Space Station Freedom
  - Advanced Protein Crystal Growth Facility
  - Space Station Furnace Facility
  - Modular Containerless Processing Facility
  - Fluid Physics/Dynamics Facility
  - Modular Combustion Facility
  - Biotechnology Facility

9001-006-18CW 01/10/90



#### Microgravity Science and Applications Evolution Strategy



- Initial Strategy: Deploy six facilities prior to SSF Assembly Complete
- Current Strategy: Rephased developments in order to resolve issues with:
  - Phasing of Space Station
  - Budget and schedule incompatibilities
  - Technical capability constraints
- Rephasing allows MSA Program time to:
  - Enhance research base
  - Strengthen project management base
  - Gain more on-orbit experience

9001-008-19CW 01/10/90



#### **Human Exploration Initiative**



Basic approach

| <u>1990's</u>         | <u> 2001 - 2010</u> |    | <u>Beyond 2010</u> |
|-----------------------|---------------------|----|--------------------|
| Space Station Freedom | Lunar Outpost       | ۲  | Mars Exploration   |
| Lunar Orbiter         | Mars Robots         | \\ | Lunar Operations   |

- Long-range exploration goal is Mars
- Moon is justified on its merits, as well as a stepping stone toward Mars
- 90-day study will develop a baseline option and analyze impact of variations on milestones and program scope
- Baseline and options will be approved by NASA Administrator

9001-008-22CW 01/10/90



### Human Exploration Initiative MSAD Program Strategy



#### MSAD's Role in the Human Exploration Initiative

- Determine influence of gravity and other extraterrestrial environments on fundamental processes/phenomena. Emphasis on:
  - Processes/phenomena significantly altered or affected by gravity variations and other unique attributes of the extraterrestrial environment
  - Processes/phenomena whose understanding under extraterrestrial conditions will benefit planned HEI activities
- Support basic research activities which can clearly benefit from exploiting the unique attributes of the lunar environment

9001-008-23CW 01/10/90



#### **Human Exploration Initiative**



#### **Initiative Research Areas**

- Fluid Dynamics and Transport Phenomena
  - Multiphase flow
  - Phase change heat transfer
  - Fluids management
- Mechanics of Granular Media
  - Soil mechanics
  - Rheology
- Combustion
  - Fire safety
  - Power
- Materials Processing
  - Resource utilization/chemical processes
  - Materials manufacturing

9001-008-24CW 01/10/90



#### **Strategic Planning Summary**



- Aggressive hardware development program to take advantage of a number of opportunities
  - Shuttle
  - Space Station
  - Free Flyers
  - Human Exploration Initiative
- Increased emphasis on Research Announcements
  - Ground-Based Program
  - Flight Program
- Planned program augmentations
  - Ground-Based Program
  - Fundamental Science (Flight Program)
  - Sounding Rocket Opportunities

9001-008-25CW 01/10/90